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Abstract

Intelligent Connected Vehicles (ICVs) are a core component of mod-
ern transportation systems, and their security is crucial as it directly
relates to user safety. Despite prior research, most existing studies
focus only on specific sub-components of ICVs due to their inherent
complexity. As a result, there is a lack of systematic understanding
of ICV vulnerabilities. Moreover, much of the current literature re-
lies on human subjective analysis, such as surveys and interviews,
which tends to be high-level and unvalidated, leaving a significant
gap between theoretical findings and real-world attacks.

To address this issue, we conducted the first large-scale empiri-
cal study on ICV vulnerabilities. We began by analyzing existing
ICV security literature and summarizing the prevailing taxonomies
in terms of vulnerability locations and types. To evaluate their
real-world relevance, we collected a total of 649 exploitable vul-
nerabilities, including 592 from eight ICV vulnerability discovery
competitions, Anonymous Cup, between January 2023 and April
2024, covering 48 different vehicles. The remaining 57 vulnerabil-
ities were submitted daily by researchers. Based on this dataset,
we assessed the coverage of existing taxonomies and identified
several gaps, discovering one new vulnerability location and 13
new vulnerability types. We further categorized these vulnerabili-
ties into 6 threat types (e.g., privacy data breach) and 4 risk levels
(ranging from low to critical) and analyzed participants’ skills and
the types of ICVs involved in the competitions. This study provides
a comprehensive and data-driven analysis of ICV vulnerabilities,
offering actionable insights for researchers, industry practitioners,
and policymakers. To support future research, we have made our
vulnerability dataset publicly available.
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1 Introduction

With the rapid advancement of artificial intelligence and 5G com-
munication technologies, Intelligent Connected Vehicles (ICVs) are
becoming integral to modern transportation systems [21]. Unlike
traditional vehicles, ICVs incorporate cloud platforms, mobile ap-
plications (APPs), In-Vehicle Infotainment (IVI) systems, Advanced
Driver Assistance Systems (ADAS), and diverse networks, markedly
enhancing their intelligence [46]. However, this complex multi-
component architecture also introduces significant security risks,
which may lead to serious consequences. For example, in 2018, a
self-driving Uber vehicle fatally struck a pedestrian due to a fail-
ure in the ADAS to correctly identify her [1]. In September 2024,
Rivera et al. [2] discovered an authorization vulnerability in Kia
ICVs, allowing attackers to remotely control the vehicle using only
the license plate number, posing a serious threat to user safety.

To address the challenges in ICV security and safety, re-
searchers have conducted extensive explorations in ICV security
and proposed several theoretical attack taxonomies and threat mod-
els [17, 24, 33, 34, 39]. For example, Pekaric et al. [33] systematically
summarized existing work, identified 48 attack vectors, and cat-
egorized them into five types (e.g., physical attacks), providing a
theoretical foundation for developing defense strategies. Moreover,
Jing et al. [27] conducted surveys and interviews with automotive
security practitioners and systematically categorized the attack sur-
faces of ICVs into seven major classes (e.g., in-vehicle components),
constructing a structured attack surface model for ICVs. These
early taxonomies offer valuable frameworks for understanding ICV
security.

However, existing taxonomies suffer from two main limitations.
First, the attacks and analyses they are based on are often incom-
plete and focus only on specific aspects of ICVs, such as physical
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and network-based attacks [33], or issues in autonomous driving
systems like Apollo [23, 43]. As a result, there is a lack of holistic
understanding of the overall security landscape in ICVs. Second,
most taxonomies are constructed based on expert knowledge and
literature review, resulting in high-level, conceptual abstractions of
the attack surface. These taxonomies remain largely theoretical and
have not been systematically validated against real-world attack
data. In particular, it remains unclear which categories in existing
taxonomies are actually reflected in real-world attacks, and which
potential categories are missing altogether. Addressing this gap is
crucial for evaluating the practical coverage of current taxonomies,
and for identifying areas that require refinement or extension.

To this end, we conducted the first large-scale empirical study
ICV vulnerabilities. To address the limitations of existing research,
we first collected and analyzed 13 representative papers on ICV
security, manually extracting the reported attack methods, vulnera-
bilities, and security issues. Based on this, we constructed a unified
taxonomy focused on two key dimensions: vulnerability locations
and vulnerability types, encompassing 11 location categories and 35
type categories. This unified taxonomy provides a comprehensive
synthesis of existing ICV vulnerability analyses in the literature.

To evaluate the real-world applicability of these taxonomies, we
made significant efforts to collect and analyze real-world exploits.
Over a 16-month period, we gathered 890 vulnerability reports
through daily submissions from researchers and eight “Anonymous
Cup” ICV vulnerability discovery competitions. These competitions
employed a black-box testing approach on complete vehicles and
involved 48 vehicle models from 19 manufacturers, encompassing
a wide range of vehicle architectures (e.g., distributed ECUs) and
security mechanisms (e.g., QNX hypervisor).

All submitted reports underwent a rigorous validation pro-
cess—including real-vehicle reproduction, expert review, and dedu-
plication, which ultimately confirmed 649 unique and exploitable
vulnerabilities. The entire data collection and analysis effort
spanned 98 person-months, with vehicle rental costs totaling USD
51,000 and vulnerability bounties exceeding USD 340,000. These
efforts ensured the scale, diversity, and reliability of the dataset,
forming a robust foundation for validating and extending existing
ICV vulnerability taxonomies.

Based on the collected taxonomies and real-world exploitable
vulnerabilities, we systematically mapped the 649 real-world vul-
nerabilities to these taxonomies, which allows us to evaluate how
well these empirical vulnerabilities align with existing security clas-
sification taxonomies. Our analysis shows that the collected vul-
nerabilities could cover 91% of the subcategories in location-based
taxonomies and 89% of the subcategories in attack-type taxonomies,
indicating strong representativeness and broad applicability. More-
over, we identified several critical dimensions that frequently appear
in real-world attacks but are missing from current taxonomies, in-
cluding one previously undefined location (i.e., T-Box) and thirteen
new attack types (e.g., file accessing vulnerabilities). These findings
not only reveal blind spots in existing vulnerability classification
systems but also provide clear, data-driven directions for their fu-
ture updates, thereby helping security research better align with
the actual threat landscape of modern ICV systems.

Further analysis results show that vulnerabilities are primarily
concentrated in the cloud platform (37.8%) and IVI module (32.0%).
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In terms of vulnerability types, authorization vulnerabilities (36.4%)
and information leakage (17.3%) vulnerabilities are the most com-
mon, posing serious threats to user privacy and vehicle control.
We also observed strong correlations between vulnerability types
and modules. For example, all 26 web-related vulnerabilities were
found in the cloud platform. More importantly, we identified signif-
icant differences in vulnerability distribution across vehicle types.
For instance, SUV models have a significantly higher number of
vulnerabilities compared to sedans and MPVs, with vulnerabilities
particularly concentrated in the IVI module. These findings reveal
the specific security risks faced by different modules and vehicle
types, highlighting the importance of developing modular and dif-
ferentiated security protection strategies. Based on these findings,
we offer targeted recommendations to ICV stakeholders, including
manufacturers, researchers, and regulators. By implementing these
recommendations, stakeholders can better mitigate security risks,
improve protection across different ICV modules, and ultimately
contribute to a safer intelligent transportation ecosystem.
In this paper, we make the following contributions:

e Large-Scale ICV vulnerability dataset construction. We
amassed a dataset of 649 verified ICV vulnerabilities through
eight competitions held from January 2023 to April 2024, val-
idated individually with participants to ensure accuracy. This
realistic annotated dataset, which is significantly larger than
those used in prior studies, is publicly available [3] and provides
a robust empirical foundation for future ICV security research.

e Summarizing, mapping, and extending existing tax-
onomies. We summarized and unified the vulnerability tax-
onomies derived from existing literature. We mapped the col-
lected vulnerabilities to these taxonomies to evaluate their cov-
erage and relevance. Through this process, we identified and
added previously unaddressed vulnerability types and locations,
thereby extending the existing classification systems.

o Systematic multi-dimensional vulnerability analysis. We
conducted an in-depth analysis of vulnerability characteristics
from multiple dimensions, uncovering various distribution pat-
terns and inter-dimensional correlations, thereby providing more
precise and practical guidance for ICV development and testing.

2 Background

To deepen the understanding of ICV security, this section introduces
the overall architecture of ICVs and related work.

2.1 ICV architecture

As shown in Fig 1, the ICV system comprises multiple key compo-
nents that collectively support its intelligent and connected func-
tionalities. Among them, the APP (@) serves as a vital interface
between users and vehicles. Through APPs developed by ICV enter-
prises, owners can remotely control their vehicles, enhancing the
overall user experience. These APPs have become a core part of the
ICV software system. Acting as the central hub, the cloud platform
(®) not only enables services such as remote control, ADAS, OTA
updates, and accident assistance, but also provides enterprises with
capabilities for data management and productivity improvement.
Another essential component is the ECU (), which governs the
operation of various vehicle subsystems. A typical ICV is equipped



Towards Understanding and Characterizing Vulnerabilities in Intelligent Connected Vehicles through Real-World Exploits

Operating System:

QNX, AGL, Android,...

S N
b o O @20
Figure 1: The general architecture of an ICV.

with hundreds of ECUs to ensure coordinated system performance.
The IVI system (@) delivers both information and entertainment
services, supports interactions via touchscreen and smart voice
assistants, and runs operating systems such as QNX or Android.

In addition, the T-Box module (®) manages communication be-
tween internal and external components of the ICV—connecting
with the cloud platform via 4G/5G, linking to mobile devices
through Wi-Fi or Bluetooth, and interfacing with ECUs via the
CAN bus. ICVs rely on a variety of network technologies (®) to per-
form data transmission and positioning tasks. These include GPS
for positioning, Wi-Fi and Bluetooth for short-range communica-
tion, and CAN bus and Ethernet for high-bandwidth in-vehicle data
exchange. Radio components (@), such as contactless keys and GPS
receivers, are primarily used for vehicle unlocking and positioning.
Finally, as essential infrastructure for electric ICVs, charging piles
(®) support user authentication via RFID cards, APPs, or QR codes,
and, after verification by the cloud platform, negotiate charging
parameters with the vehicle using protocols such as ISO 15118 to
ensure a safe and efficient charging process.

2.2 Related work

2.2.1 Autonomous driving security and safety. Numerous studies
have focused on Autonomous Driving Systems (ADSs), which are
specialized subsystems comprising perception, prediction, plan-
ning, and control modules designed to enable autonomous vehicle
operation through advanced AI models. For example, Cheng et
al. proposed BehAVExplor [15], and Li et al. [28] introduced AV-
FUZZER—both aiming to uncover issues in ADSs that could lead
to vehicle collisions or response timeouts. These works primarily
target the planning module and emphasize functional correctness
(e.g., model robustness) rather than typical security vulnerabilities.
Tang et al. [43] provided a systematic review of testing approaches
for ADSs at both the module and system levels. While their review
includes some attack scenarios in sensor and perception modules,
these are primarily used to illustrate testing optimization objectives
rather than to comprehensively analyze security threats. As a result,
many aspects of general ICV security are not covered due to the
paper’s distinct focus on testing methodologies for ADSs.
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Additionally, Pham et al. conducted an empirical survey [34]
on attack and defense strategies in autonomous vehicles, covering
threats such as LIDAR/Radar jamming and adversarial attacks on
the perception module of ADS. Gao et al. [22] analyzed the attack
surface from four dimensions: sensors (e.g., camera), operating
systems (e.g., Apollo), control systems (e.g., CAN), and V2X com-
munication (e.g., V2V, V2I), which are needed for the autonomous
driving. Garcia et al. [23] conducted pioneering work on general
bugs in open-source ADSs such as Apollo [9] and Autoware [19],
which are often not vulnerabilities.

2.2.2  ICVsecurity. Beyond security concerns specific to ADSs, sev-
eral studies have investigated broader attack surfaces and threats in
ICVs. Pekaric et al. [33] conducted a literature review and identified
48 types of attacks from existing papers, categorized by access lev-
els—physical, close proximity, and remote—and further subdivided
them into targets such as ECUs, radio systems, and Wi-Fi. Simi-
larly, Sommer et al. [39] proposed a simpler classification based on
security threats, including spoofing, tampering, repudiation, infor-
mation disclosure, denial of service (DoS), and privilege escalation.

Thing et al. [44] presented a taxonomy covering both physical
access attacks (e.g., code modification and injection) and remote
attacks (e.g., signal spoofing and jamming). Sun et al. [41] cate-
gorized cybersecurity risks into in-vehicle network attacks, V2X
communication attacks, and other threats, including GPS spoof-
ing, CAN bus vulnerabilities, DoS, and replay attacks. Limbasiya et
al. [29] surveyed attack detection and prevention techniques across
categories such as impersonation, DoS, Sybil, relay, injection, and
side-channel attacks. Gupta et al.[25] classified ICV attacks from
software, hardware, and network perspectives, identifying common
types such as injection, DoS, and side-channel attacks.

Niroumand et al. [32] provided a taxonomy of attacks and miti-
gation strategies, treating the vehicle as a control system and fo-
cusing on attacks like DoS, jamming, man-in-the-middle, and data
injection. Bouchelaghem et al.[11] proposed a taxonomy of attack
surfaces in autonomous vehicles and reviewed recent real-world
attack experiments, covering six major categories. Luo et al. [30]
conducted a systematic review of automotive cybersecurity testing,
with a focus on testing methodologies and tools.

While these works offer valuable insights into ICV threats and
taxonomy construction, they primarily rely on literature reviews,
expert analysis, or industry interviews. As such, they remain largely
conceptual and lack empirical validation through real-world ex-
ploits. In this paper, we aim to unify the findings from these studies
into a comprehensive taxonomy and validate each category using
a dataset of confirmed, real-world exploitable vulnerabilities.

2.2.3 Bug studies in other domains. Numerous empirical studies
have analyzed bugs across various software systems, focusing on
their symptoms, root causes, and broader characteristics [13, 14,
27, 35, 38, 40, 45]. These include analyses of bugs in compilers
(e.g., GCC [40]), defects in deep learning frameworks [38], and
issues in container runtimes [45]. Our work shares a similar goal: to
systematically characterize and evaluate vulnerabilities, specifically
in the ICV domain, based on large-scale real-world exploits.
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Figure 2: The overview of our methodology.

3 Methodology

To systematically understand the security status of ICVs and identify
their primary threats, a comprehensive analysis of ICV vulnerabili-
ties is needed. This process, as illustrated in Fig. 2, consists of two
main stages: data collection and manual analysis. First, we collected
a total of 890 vulnerability reports through an online reporting
platform, including 139 reports submitted daily by researchers and
751 reports from vulnerability discovery competitions. Each report
underwent rigorous verification and was tested on real vehicles,
ultimately confirming 649 reproducible vulnerabilities. Second, we
collected 13 representative papers related to ICV security, most
of which are survey papers that themselves summarize a broad
range of prior ICV research. Since these papers focus on different
aspects of ICV security, we manually extracted and analyzed their
taxonomies in terms of vulnerability locations and types, and uni-
fied them into a consolidated taxonomy. Third, we mapped the
collected vulnerabilities to these existing taxonomies to evaluate
their coverage and identify gaps, allowing us to update the taxon-
omy with newly discovered categories. In addition, we classified
the vulnerabilities by threat types and risk levels to provide a more
comprehensive understanding of their security implications.

3.1 Data collection

To ensure the comprehensiveness and diversity of the dataset, we
collect ICV vulnerabilities through an online vulnerability reporting
platform, including vulnerabilities submitted daily by researchers
as well as those from ICV vulnerability discovery competitions.

3.1.1 ICV vulnerability reporting platform. We established and op-
erated an online platform for vulnerability reporting and tracking.
This platform enables security researchers to submit vulnerabilities
and helps manufacturers monitor the security status of their prod-
ucts in real time. During this study, the platform received 139 vul-
nerability reports submitted daily by researchers. After verification,
57 vulnerabilities were confirmed to meet the following criteria:
reproducible, within the scope of ICV security, non-duplicative, and
validated through testing on real vehicles.

3.1.2 ICV vulnerability discovery competitions. To comprehen-
sively collect ICV vulnerabilities, we organized 8 vulnerability dis-
covery competitions between January 2023 and April 2024 in China,
collectively referred to as the “Anonymous Cup”.

Ethical consideration. We carefully addressed the potential
ethical concerns related to the competitions. All activities were con-
ducted in accordance with strict ethical standards: the use of ICVs
was fully authorized by their respective manufacturers; participants
signed non-disclosure agreements; and all confirmed vulnerabilities
were responsibly disclosed to the manufacturers for remediation
prior to any public release. These measures ensured minimal secu-
rity risk and full compliance with legal and ethical guidelines.

Each competition lasted approximately 15 days and involved
6 different vehicle models, with a total of 48 ICVs participating.
These ICVs represented 19 manufacturers, including brands such
as Bavarian Motor Work (BMW), Tesla, and Audi. To protect confi-
dentiality, specific brands and models were not disclosed. The ICVs
were either directly provided by manufacturers or rented through
local rental companies. The average daily rental cost was $71, with
a total expense of approximately $51,000. All ICVs supported net-
work connectivity, and 34 of them (70.8%) were equipped with a
remote control APP.

The competition consisted of two phases: a testing phase and
a demonstration phase. During the testing phase, participants
adopted a black-box testing approach—no detailed documentation
or configuration information was provided. Each team was granted
legitimate access to a test vehicle and its associated mobile applica-
tion, simulating a typical penetration testing environment. Some
participants also employed social engineering techniques (e.g., gath-
ering publicly available information) to aid in their reconnaissance.
In the subsequent demonstration phase, participants were required
to reproduce their attacks on a separate vehicle of the same make
and model without any legitimate access, thereby simulating a
real-world attack scenario targeting an unsuspecting victim.

Participants submitted vulnerability reports via an online plat-
form. Across the eight competitions, a total of 751 submissions
were received. To minimize data redundancy among the vehicles,
deduplication was based on OS versions (identified through the IVI
interface) and underlying hardware models (determined via post-
competition firmware extraction). For vulnerabilities that could not
be verified initially, submitters were required to provide additional
information until confirmation.

3.1.3  Profile of the participating ICVs and participants. Due to con-
fidentiality and business concerns, we are unable to release detailed
information about the vulnerabilities and the specific participat-
ing ICVs. However, to enhance the reproducibility of our study
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Figure 3: The distribution of ICV classes.

and provide better context for the test subjects, we present the
profile of the participating ICVs. Specifically, we classify the partic-
ipating vehicles along four dimensions: First, based on the widely
adopted classification standard from the U.S. Environmental Protec-
tion Agency (US EPA [6]), the vehicles are categorized into sedans
(50.00%), standard SUVs (41.67%), and MPVs (8.33%), as shown in
Fig. 3 (a). Second, according to the SAE levels of driving automa-
tion [8], the vehicles span Levels L1, L2, and L3, with Level 2 being
the most common, accounting for 75% of the total, as illustrated
in Fig. 3 (b). Third, by power type, the vehicles include electric
vehicles (45.83%), petrol vehicles (20.83%) and hybrids (33.33%), as
shown in Fig. 3 (c). Finally, in terms of country of manufacture, the
vehicles come from six countries, with the top three being China
(58.33%), the United States (12.5%), and Germany (12.5%).

Most participants were from China, as the competitions were
held locally. They primarily came from cybersecurity companies
and academic institutions, bringing strong technical foundations
and extensive hands-on experience. Based on registration data,
approximately 95% had prior experience in national or enterprise-
level security competitions, and over 85% had more than three
years of experience in ICV security research. Although we did
not conduct a formal skill survey prior to the competitions, we
performed a correlation analysis between participants’ technical
backgrounds and the vulnerabilities they submitted. This helps
support reproducibility in the context of human-factor studies.

To facilitate further analysis, we have released all raw data in our
dataset [3]. This includes the ICV ID, participant ID, primary skills
used for each vulnerability, and high-level characteristics of each
ICV (e.g., EPA category, SAE level, power type). These relationships
enable deeper analysis, such as exploring how participant skill
sets relate to vulnerability types or how vulnerabilities correlate
with vehicle characteristics (e.g., EPA classification). More detailed
discussions can be found in Section 7.

3.1.4  Existing ICV vulnerabilities. To better understand existing
ICV vulnerabilities, we collected 13 recent papers [11, 22, 23, 25, 29,
30, 32-34, 39, 41, 43, 44] that focus on ICV attacks and taxonomy
construction. Most of these are survey papers that summarize a
wide range of relevant literature in the field. We manually extracted
the reported attacks and vulnerability types from each paper to
form a consolidated view. The detailed list of vulnerability types
extracted from each source is available on our project website [4].

3.2 Manual analysis

Based on the vulnerabilities and attacks extracted from each pa-
per, we manually unified them into two taxonomies: vulnerability
locations and vulnerability types. This task was relatively straight-
forward, as many of the attacks were conceptually similar across
papers. In general, the taxonomy draws upon established standards
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like CWE [7], while adapting them to the specific context of ICVs.
In cases where different terminologies were used to describe similar
attacks, we grouped them under the same unified category. The
taxonomy construction process was conducted collaboratively by
three security experts. Any disagreements were resolved through
discussion until a consensus was reached. The details of the unified
taxonomies are presented in Section 4 and Section 5.

3.3 Mapping of existing vulnerabilities

We further analyzed the root causes of the collected vulnerabilities
and mapped them to the existing taxonomies. The analysis was
conducted by four security experts, each with over five years of
experience in ICV vulnerability auditing and competition judging.
The analysis followed a collaborative, discussion-based approach
to ensure rigor and reliability. The analysis was based on 890 vul-
nerability reports from 48 ICVs, among which 649 were confirmed
as valid vulnerabilities. Each vulnerability was independently an-
alyzed by the experts to determine its root cause and draft a de-
scription, followed by classification. In cases of disagreement, the
team engaged in multiple rounds of discussion until consensus was
reached, ensuring consistency and accuracy in classification results.

Our classification followed a multi-dimensional framework: @
Location-based categorization: To analyze the distribution of
vulnerabilities, we first mapped them to the unified location-based
taxonomy. ® Type-based categorization: To support targeted
mitigation strategies, we mapped each vulnerability to the uni-
fied type-based taxonomy. ® Threat-based categorization: To
identify potential security consequences, we further classified vul-
nerabilities into six threat categories, including privacy data breach
and control hijacking. @ Risk-based categorization: To guide
remediation priorities, we assigned each vulnerability a risk level
(critical, high, medium, or low) based on its potential impact.

For vulnerabilities that could not be mapped to any existing cate-
gories, we proposed new categories and incorporated them into the
updated taxonomy. This data-driven, expert-led, multi-dimensional
classification framework provides a systematic overview of real-
world ICV vulnerabilities and offers practical guidance for future
security research and mitigation efforts. A total of 98 person-months
were invested in organizing the competitions, reviewing submis-
sions, and conducting the vulnerability analysis, involving four
security experts and two supporting staff members.

4 Location taxonomy

Fig.4 presents the location-based taxonomy, which includes 11 leaf
categories. Categories in white represent those also covered in pre-
vious works, while categories in green are newly discovered in our
study based on real-world vulnerabilities and were not previously
included. Categories with dashed borders fall outside the scope
of our analysis since we only consider vulnerabilities in software.
Each number indicates how many of the collected vulnerabilities
fall under that category. We next introduce each category briefly.

4.1 Outside-vehicle

The outside-vehicle category, which includes external yet security-
critical systems such as cloud platforms, APPs, and charging piles,
accounts for 321 vulnerabilities and represents 49.5% of all vulnera-
bilities in the dataset.
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Figure 4: Location taxonomy of ICV vulnerabilities.

Finding 1: Overall, our collected vulnerabilities demonstrate
high coverage, encompassing 90.91% (10 out of 11) of the consid-
ered location categories. The only category not covered is Sensors.
Additionally, our analysis identified 1 new location category that
was not present in prior taxonomies. We also compared our cover-
age against the 13 existing papers and found that their individual
coverage ranged from 27.27% to 63.64%, which is significantly
lower than the coverage achieved by our dataset.

4.1.1  Cloud platform. The cloud platform has a total of 245 vulner-
abilities, accounting for the vast majority (76.3%) of outside-vehicle
vulnerabilities. As a core support system, the cloud platform is
responsible for key functions such as remote control, OTA (On-The-
Air) updates, and authentication, involving multiple subsystems
and communication protocols, which significantly broadens the
attack surface. Studies show that each ICV connects to an average
of 5.1 cloud platforms. Inconsistent standards among manufactur-
ers, along with weak security design and permission management
during integration, further exacerbate the number of vulnerabilities.

4.1.2  APP. As the primary outside-vehicle component for remote
control, the APP also has certain vulnerabilities, accounting for
20.6% of all outside-vehicle vulnerabilities. Our study found that ICV
APPs often have serious flaws in data transmission, such as binding
control commands only to the Vehicle Identification Number (VIN)
without additional encryption, making them susceptible to privacy
leaks and replay attacks. Note that additional details about the
APP-related taxonomy are available. Due to space limitations, the
detailed taxonomy information is provided in our dataset [3].

4.1.3 Charging pile. The charging pile represents a smaller yet no-
table risk, comprising 3.1% of outside-vehicle vulnerabilities. Charg-
ing pile systems interact with both the cloud platform and the
vehicle to manage authentication, billing, and charging processes,
relying on complex protocols such as ISO 15118 and OCPP [18].
The openness of these protocols and their connectivity to mul-
tiple systems expand the attack surface [31], where insufficient
authentication and encryption can lead to security risks, including
information leakage and privilege escalation.

4.2 In-vehicle

In-vehicle vulnerabilities total 297, accounting for 45.8% of the total.
These vulnerabilities are divided into six subcategories: IVI, radio,
ADAS, gateway, others, and T-Box, with details as follows.

4.2.1 1VI. IVI vulnerabilities account for 70.0% of in-vehicle vul-
nerabilities. To support features such as Bluetooth, Wi-Fi, and voice
assistants, the IVI system opens a large number of network ports
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and debugging interfaces, many of which are not essential for nor-
mal operation but provide entry points for attackers. In addition,
the debugging mode may be leaked, and some manufacturers keep
debugging ports open for maintenance convenience, increasing
security risks. Moreover, to reduce costs, some manufacturers still
use outdated software components and communication protocols,
further expanding the attack surface.

4.2.2 Radio. Radio vulnerabilities account for 5.1% of in-vehicle
vulnerabilities. It uses wireless technologies such as RFID or NFC
for signal transmission. Despite encryption, the inherent openness
of wireless communication makes it susceptible to interception and
replay attacks [16]. Additionally, the proximity-based, contactless
keyless entry feature expands the attack surface, particularly mak-
ing it vulnerable to relay and replay attacks, as it automatically
detects keys within a specified range [10].

4.2.3 ADAS, gateway and others. This category includes ADAS,
gateway, and simpler ECUs such as Bluetooth key signal receivers,
with a total of 46 vulnerabilities identified, accounting for 15.5%
of all in-vehicle system vulnerabilities. Vulnerabilities in ADAS
arise from reliance on external sensors, high-precision maps, and
real-time data from the cloud platform, with open data interfaces
and multi-source data fusion increasing the risk of interference or
tampering [26]. Gateway ECU vulnerabilities stem from its role as
a central communication hub with open interfaces like firewalls
and intrusion detection, which increase the attack surface, and
complex security configurations that can lead to misconfigurations
or insufficient encryption [37]. Simpler ECUs like Bluetooth key
signal receivers vary across different ICV models, lacking common
characteristics and presenting diverse security challenges [36].

4.2.4 T-Box. T-Box vulnerabilities account for 9.4% of in-vehicle
vulnerabilities. As the core communication interface, it is responsi-
ble for receiving and verifying remote control commands. Its use of
multiple communication protocols, particularly MQTT (Message
Queuing Telemetry Transport), along with its high-level access
privileges, expands the attack surface [47]. Misconfigurations or
leaks in certificate management further exacerbate security risks.

Finding 2: ICV vulnerabilities are pervasive and are strongly in-
fluenced by the functions of individual modules. Outside-vehicle,
especially the cloud platform, account for a significant portion of
vulnerabilities due to their extensive connectivity and reliance
on data. In-vehicle vulnerabilities are most prominent in the IVI
system, driven by its exposure to external data inputs and com-
plex software architecture. Although network vulnerabilities are
relatively few, they still pose significant risks due to their critical
role in vehicle system communication.

4.3 Network

There are 31 network vulnerabilities, accounting for approximately
4.8% of the total. As the core communication backbone of ICV sys-
tems, the network component integrates various protocols (such
as CAN, Telnet, and SSH) to enable interoperability and communi-
cation between functional modules. However, these protocols lack
a unified security design, making transmitted data susceptible to
interception and tampering. In addition, in-vehicle networks (such
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as the CAN bus) typically trust all connected devices by default,
allowing attackers to easily access the system through physical in-
terfaces (such as OBD-II) and launch malicious operations, thereby
exposing serious weaknesses in access control and data integrity.

5 Type taxonomy

To facilitate the development of targeted detection techniques to
address the diverse security challenges in ICVs, we characterize
the vulnerabilities based on their types. As shown in Fig. 5, we
identified a total of 35 categories in the vulnerability type taxon-
omy. Similar to the location-based taxonomy, 22 of these categories
(shown in white) are already covered by existing works. In addition,
we discovered 13 new categories (in green) that were not previously
reported. Three categories were marked as out-of-scope, either be-
cause they relate to autonomous vehicle components or involve
malware types that typically require user interaction. Below, we
will introduce these types.

® Authorization vulnerability. Table 1 shows that authoriza-
tion vulnerabilities are the most common type, with a total of 236
cases, accounting for 36.4% of all vulnerabilities. These vulnera-
bilities are often caused by misconfigurations or design flaws and
can lead to high-risk issues such as privacy breaches. Specifically,
they include unauthorized accessing (135 cases), weak password
(75 cases), privilege escalation (18 cases), and identity spoofing (8
cases). These vulnerabilities are mainly found in external modules
(e.g., cloud platform) and in-vehicle modules (e.g., IVI), indicating
significant security risks in these components due to inadequate
authorization management.

O Information leakage vulnerability. There are 112 infor-
mation leakage vulnerabilities, accounting for 17.3% of the total.
They are mostly caused by implementation errors, which can easily
lead to the leakage of sensitive information such as the VIN and
keys. Since external modules like cloud platforms and APPs fre-
quently handle large amounts of sensitive data, information leakage
vulnerabilities are particularly common in these modules.

® Injection vulnerability. There are 79 injection vulnerabili-
ties in total, accounting for 12.2% of all cases, mainly including SQL
injection (45 cases) and command injection (34 cases). SQL injec-
tion typically results from insufficient input validation, allowing
malicious code to be executed and causing privacy data breaches.
We categorize it as a general injection vulnerability rather than
limiting it to web scenarios, as it also appears in non-web con-
texts such as IVI systems and APPs. Command injection occurs due
to inadequate validation of external inputs, enabling attackers to
execute unauthorized commands. As shown in Table 1, injection
vulnerabilities are mainly found in cloud platforms and IVI sys-
tems, which frequently handle user inputs and database operations,
making them more susceptible to attacks.

® OS vulnerability. OS vulnerabilities are caused by security
flaws at the system level, with a total of 55 cases, accounting for 8.5%
of all vulnerabilities. They are mainly categorized into five types:
kernel vulnerabilities (25 cases), arbitrary software installation (23
cases), USB vulnerabilities (3 cases), debug interface exposure (2
cases), and upgrade forgery (2 cases). Among them, kernel vulnera-
bilities and USB vulnerabilities are unique to our vulnerability type
taxonomy. As the most common type of OS vulnerability, kernel
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issues can lead to privacy breaches or control hijacking, with risk
levels reaching up to medium. These vulnerabilities are primarily
found in in-vehicle modules, especially IVI systems, which are par-
ticularly sensitive to kernel vulnerabilities and malicious software
installations.

® DoS vulnerability. There are 47 DoS vulnerabilities, account-
ing for 7.2% of the total vulnerabilities (see Table 1). These vulnera-
bilities are primarily found in IVI components, making up 55.3% of
all DoS vulnerabilities. The root causes include component configu-
ration errors, kernel defects, and logical design weaknesses, such as
protocol stack vulnerabilities or resource exhaustion attacks, which
may lead to system damage within the affected components.

® File operation vulnerability. File operation vulnerability
is a new high-level category in our classification, with a total of
38 cases, accounting for 5.9% of all vulnerabilities. This category
includes subtypes such as file accessing (14 cases), file download (8),
file tampering (7), file upload (5), file traversal (3), and file deletion
(1). As shown in Table 1, these vulnerabilities are primarily found
in cloud platforms and IVI systems. Cloud platforms, which handle
large amounts of file data, are vulnerable to insufficient access
control, while IVI systems, which frequently perform local file
operations, are exposed to risks such as tampering and unauthorized
downloads.

Among them, file accessing vulnerabilities are typically caused
by improper partition management in cloud platforms or incorrect
permission configurations in IVI systems, allowing attackers to
read sensitive files and cause privacy breaches [12]. File download
vulnerabilities allow attackers to obtain sensitive files by modi-
fying URLSs or exploiting unvalidated download paths, while file
traversal vulnerabilities bypass directory restrictions by crafting
malicious paths to access unintended files. Although all three in-
volve unauthorized access, they differ in technical mechanisms,
attack objectives, and stages in the attack chain, and thus represent
three distinct types of vulnerabilities.

@ Interception vulnerability. Table 1, there are 36 interception
vulnerabilities in total, accounting for 5.5% of all vulnerabilities. It
include six subtypes: relay (11 cases), replay (8), man-in-the-middle
(8), GPS spoofing (5), traffic hijacking (3), and DNS hijacking (1).
Interception vulnerabilities are primarily concentrated in IVI, ECU,
and radio modules. IVI and ECU, which are involved in internal ve-
hicle communication, are vulnerable to interception attacks, while
network modules like T-Box and radio, due to their wireless com-
munication characteristics, are also susceptible to signal hijacking.
Among these vulnerabilities, relay attacks are a vulnerability type
unique to our classification. These vulnerabilities typically arise
from the system’s failure to encrypt or authenticate transmitted
information, allowing attackers to exploit relay communication
to perform unauthorized actions, potentially even unlocking the
vehicle without authorization [20], with risk levels reaching High.

® Web-specific vulnerability. As shown in Table 1, there are
26 web-specific vulnerabilities, accounting for 4.0% of the total.
These vulnerabilities are categorized into four types: XSS (17 cases),
deserialization (7), phishing (1), and XXE (1). Web-specific vulnera-
bilities are only found in the cloud platform, indicating that such
issues are mainly confined to the cloud environment. XSS vulnera-
bilities arise from the failure of the manufacturer’s cloud platform to
properly handle user inputs (e.g., lack of input validation), allowing
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Figure 5: Type taxonomy of ICV.
Table 1: Frequency of vulnerability types for each location.
Type Sub-Type | Cloud platform VI APP ECU Network T-Box Radio | Charging pile Sum
#N T R [#N T R|[#N T R|#N T R|[#N T R|#N T R|#N T R[#N T R
Unauthorized accessing 57 ®@® C |45 ©®®@ H|19 @@ C|1 ® L|6 @@ H|7 @ C|- - -|- - - 135
@ Authorizati Weak password 31 @® C |14 @@ H|2 ©®®@ L|7 @@ M|15 @@ L|6 @@ M| - - -| - - - 75 | 5a6
uthorization Privilege escalation - - - |16 @@ H| - - -|1 © M|- - -|1 @ M|- - -|- - - 18
Identity spoofing 7 ©®® C - - -1 @ L|- - -|- - |- - |- - -|- - - 8
@ Information leakage - 53 ®® H |13 ©® H|27 ® H|7 ® L|1 ® L|3 ® M|- - -|8 @ L |112]112
@ Iniection SQL injection 3P ® H |n © M1 © L|- - -|- - -|]- - -]- - -]1]2 ©® M |45 79
) Command injection 16 @ H |5 @@ H|6 @@ M|3 @® M|- - -|4 @ H|- - -|- - - 34
Kernel - - - |25 @@ M| - - - - -l - - - - - - - - 25
Arbitrary software installation| 1 ©®® M |17 @@ H| - - - ® M|- - ~-|- - -|- - -|- - - 23
e 0s USB - - - 3 @ L|- - -|- - |- - -|- - -|- - -|- - - 3 |55
Debug interface exposure - - 1 @@ M| - - -|- - -|1 @ M|- - -|- - -|- - - 2
Upgrade forgery - - - - -/- - -|1 ® H|- - -|1 © M|- - -|- - - 2
® DoS - 1 ® L |26 ® L|7 ® L|5 ® H|[5 ® M|[1 ® M|2 ®M|- - - 47 | 47
File accessing 7 © H |7 © L|- - -|- - -|- - ~-|- - |- - -|- - - 14
File download 7 © M |- - -|- - -1 © L|- - ~-|- - ~-|- - - - - 8
. . File tampering - - - 7 ©®@ M| - - R R T B - 7
© File operation File upload 4 ®® M |- - |- - |- - |1 @M - - |- - - ]s5]%
File traversal 3 © L R e B e A N I I - 3
File delete 1 ® L L B e B I AT B - 1
Relay - - - - - - -]l2 @@ M|l1 @ M|- - -|8 @ H|- - - 11
Replay - - - - - ®@ H|- - -|1 ® L|- - -|5 @®@C|- - - 8
@ Intercention Man-in-the-middle - - - 7 @ M|1 ©@ M| - - -|- - |- - -|- - -|- - - 8 | 36
P GPS spoofing - - - - - -l- - -|5® L|- - -|- - - - - - - 5
Traffic hijacking - - - 3 @@ M| - - - - - -l - - -] - - -] - - - - 3
DNS hijacking - - - 1 @@ M| - - -|- - |- - |- - |- - -|- - - 1
XSS 7 ® L |- - -]- - -[- - -1- - -1- - “]- - -1- - - u
. Deserialization 7 @® M |- - -|- - |- - |- - |- - |- - -|- - - 7
© Web-specific Shichine A e I A IR S I B B
XXE 1 @ L |- - |- - |- - |- - |- - !
© Memor Buffer overflow - - - 4 @ M|- - -]6 @ H|- - -|5 @ L|- - -|- - - 15 20
emory Integer overflow - - 3 @ H|- - -|2 @@ H|- - -|- - -|- - -|- - - 5
Sum 245 208 66 46 31 28 15 10 649

Threat (T): @ Privacy data breach; @ Control hijacking; ® System damage; ® Unauthorized unlocking; ® Driving accident; ® Ransomware;
Risk (R): Low (L); Medium (M); High (H); Critical (C);
Note: The “Risk” column indicates the maximum possible risk level of vulnerabilities for this type in this location.

attackers to inject malicious scripts that are executed through other
users’ browsers, leading to privacy data breaches. The remaining
vulnerability types, such as deserialization, phishing, and XXE, are
unique to our classification.

© Memory vulnerability A total of 20 memory vulnerabilities
were identified, which can be further divided into two types: buffer
overflow (15 cases) and integer overflow (5 cases). Buffer overflow
vulnerabilities are mainly caused by developers failing to properly

handle user inputs or data, allowing attackers to trigger data over-
flows and corrupt memory. Integer overflow, a vulnerability type
unique to our classification, arises from inadequate consideration
of data type boundaries, which may lead to memory corruption and
subsequently cause privacy breaches, with risk levels reaching high.
Memory vulnerabilities primarily occur in IVI and ECU modules,
as these modules involve complex data processing and are prone
to memory errors due to insufficient input validation or improper
resource management.
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Figure 6: The threat and risk distribution.

Finding 3: The identified vulnerabilities demonstrate high cov-
erage, spanning 88.57% (31 out of 35) of the considered type
categories. The categories not covered include Backdoor, Traffic
injection, Man-at-the-end, and Sniffing. Compared to prior works,
our analysis uncovered 13 new vulnerability types. We also com-
pared our taxonomy coverage with the 13 existing papers and
observed that their individual type coverage ranged from 11.43%
to 40.00%, further underscoring the comprehensiveness of our
dataset.

Finding 4: The newly identified vulnerability locations and types
highlight the diversity and complexity of the real-world ICV
vulnerabilities we collected, underscoring the importance of data-
driven analysis as a complement to existing conceptual, literature-
based approaches. Such empirical analysis enables the refinement
and expansion of current vulnerability taxonomies.

Finding 5: Authorization vulnerabilities (36.4%) and information
leakage vulnerabilities (17.3%) are the most common, reflecting
systemic flaws in access control and data protection within ICV
systems. In addition, different modules face distinct types of
vulnerabilities (all 26 web-specific vulnerabilities are found in
the cloud platform), highlighting the urgency of implementing
targeted vulnerability detection strategies.

6 Threat and risk taxonomy

To identify specific security consequences and support threat mod-
eling, we categorize vulnerabilities by threat, producing 6 threat
categories, as shown in Table 1. Among them, privacy data breaches
refer to unauthorized access to sensitive personal or vehicle data,
compromising confidentiality; control hijacking occurs when at-
tackers gain unauthorized control over critical vehicle functions,
such as steering or braking, endangering driving safety; system
damage refers to malfunctions or disruptions causing temporary
or permanent loss of vehicle functionality, impacting operational
safety; unauthorized unlocking enables attackers to access or un-
lock vehicles without permission, increasing theft risks; driving
accidents result from system manipulation leading to crashes or
unsafe driving conditions, posing risks to occupants and others;
ransomware involves malicious software locking vehicle systems
or data, demanding payment for restoration and disrupting func-
tionality. These diverse categories underscore the severe security
threats in ICVs, necessitating targeted strategies.
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Some vulnerabilities may lead to multiple consequences. For
example, certain control hijacking vulnerabilities may also result in
privacy breaches. As shown in Fig. 6-(a), 84.13% of vulnerabilities
involve privacy data leakage, 38.06% can lead to control hijacking,
and 27.11%, 8.32%, 2.31%, and 1.54% are related to ransomware ,
system damage, unauthorized unlocking, and driving accidents,
respectively. These multifaceted risks highlight the severe secu-
rity challenges faced by ICVs and underscore the urgent need for
targeted defense strategies.

To prioritize remediation based on impact severity, we classify
vulnerabilities by risk, resulting in 4 risk levels, such as low (L),
medium (M), high (H), and critical (C). Specifically, we measures
the severity of vulnerabilities using two dimensions: the ease of
conducting an attack and the impact of the attack. A relative scoring
system from 1 to 4 is applied, and the risk level is determined based
on the vulnerability risk level determination table. The scoring of
each vulnerability is completed through collaboration between ex-
perts and the submitter, consisting of three steps: initial scoring by
the submitter, expert review, and final consensus, ensuring fairness
and accuracy. For example, if both the ease of conducting the attack
and the impact score 4, the vulnerability is classified as critical. As
shown in Fig. 6-(b), 55.16%, 34.05%, and 9.34% of the vulnerabilities
were rated as low, medium, and high risk respectively. The remain-
ing 9 vulnerabilities were rated as critical risk and distributed across
cloud platform (4), radio (3), IVI (1), and T-Box (1). They are classi-
fied as critical mainly because their impact extends to all models of
a specific brand or model or affects more than 300,000 vehicles.

7 Participants’ skills and ICV types

To further support potential reproduction, primarily dependent on
both the participants who discovered the vulnerabilities and the ICV
types in which the vulnerabilities were found, we provide additional
analysis of the participant profiles and vehicle characteristics.

7.1 Participants’ skills

As discussed in Section 3.1.3, although we did not explicitly col-
lect participants’ skills, we provided their expertise by analyzing
the relationships between participants, the vulnerabilities they dis-
covered, and the technical skills required to uncover those vul-
nerabilities. Table 2 presents the overall mapping between major
vulnerability locations/types and the corresponding skills needed.

Overall, we identify 10 categories of technical skills involved in
the discovered vulnerabilities. Among them, reverse engineering,
code audit, and penetration testing are the most frequently used,
with 260, 260, and 249 instances, respectively.

For outside-vehicle components, the dominant skill required for
vulnerabilities in the cloud platform is penetration testing (243
occurrences), reflecting the need for in-depth analysis of communi-
cation protocols and business logic. Vulnerabilities in APPs typically
involve a combination of reverse engineering (63), code audit (63),
and unpacking (63), with occasional use of traffic analysis (59).
This indicates a blend of static and dynamic analysis techniques to
uncover software logic flaws and privacy issues.

For in-vehicle components, vulnerabilities in IVI require exten-
sive use of reverse engineering (146) and code audit (146), along
with firmware extraction (135) and vulnerability reproduction (39).
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Table 2: Mapping results of the skill set.
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Table 3: Mapping results of the ICV class taxonomy.

Location & Type o @ ® ® 6 ©® O ® ©® Locati |  EPAsize SAE level Power type
ocation & Type

Cloud platform - - 243 - - 32 - 2 - - SUV Sedan MPV|L1 L2 L3 |Electric Hybird Petrol
IV 146 146 - 135 1 13 11 9 39 5 Cloudplatform | 63 38 4 |6 95 4| 44 37 24
APP 63 6 - - 5 - 66 - - - VI 11 82 8 (10183 8| 74 93 34
Location ECU 9 19 - 19 5 12 - 13 6 3 APP 17 41 - |- 46 12| 49 1
Network o7 - 7 15 - 15 - T . ECU 27 13 - |8 28 4| 26 6 8
T-Box 2t 21 - 2t - 6 - T - - Location Network 16 15 - |2 25 4| 22 6 3
Radio S S S T-Box 17 8 - |- 25 -| 9 6 10
Charging pile 4 4 6 - - - 4 - - - Radio 2 13 Sl 15 - 8 5 2
Authorization 90 90 94 68 23 72 22 37 4 Charging pile - - - - - - - - -
Information leakage | 49 49 58 21 28 1 28 3 - 1 Authorization 98 75 4 18 161 8| 95 58 24
Injection 32 32 47 13 7 - 19 - - - Information leakage| 37 35 3 |9 57 9| 45 9 21
oS 23 23 1 22 - 3 1 4 27 - Injection 22 20 1 |2 39 2| 13 2 4
Type DoS 27 27 1 20 1 1 7 1 9 8 0s 0 13 11235 2| 19 2 9
File operaFion 13 13 22 13 - - - -2 1 Type DoS 17 26 _ 2 35 6 25 9 9
Interception 313 - 12 21 - 1 - 1 1 File operation |16 3 3 [2 19 1| 3 8
Web-specific - 2% - - - - - Interception | 12 24 - |1 32 3| 21 9 6
Memory B3 B8 - B3 -2 - 2 5 - Web-specific 7 4 - |- 10 1 2 6 3
Sum 260 260 249 182 80 79 78 47 45 15 Memory 4 10 - - 14 - 9 - 5
@ Reverse engineering; @ Code audit; ® Penetration testing; @ Firmware extraction; Sum 253 210 12 |26 417 32| 232 154 89
Car count 20 24 4 |6 36 6 22 16 10

® Traffic analysis; ® Brute force; @ Unpacking; ® Port scanning;
® Vulnerability reproduction; ® Fuzzing;

These skills point to the need for both static inspection and dy-
namic testing of services and interfaces. ECU vulnerability discov-
ery typically involves reverse engineering, code audit, and firmware
extraction (19 each), supported by brute force (12), port scanning
(13), vulnerability reproduction, and traffic analysis. These require-
ments suggest the need for direct hardware access and expertise in
analyzing embedded firmware.

For the network components, the analysis primarily relies on
brute force (15), port scanning (15), and code audit (7). Researchers
often use tools like CANoe to inspect communication protocols such
as CAN, LIN, and FlexRay, attempting to forge control messages or
send malformed packets to trigger system malfunctions.

Participants employed a diverse range of technical approaches
depending on the type of vulnerability being discovered. Autho-
rization vulnerabilities were the most frequently analyzed and in-
volved the broadest spectrum of skills. The most commonly used
techniques included penetration testing (94), reverse engineering
(90), and code audit (90). This is expected, as such vulnerabilities of-
ten require comprehensive analysis of authentication mechanisms,
access control models, and communication protocols.

Information leakage and injection attacks were also common
and primarily relied on static analysis techniques such as reverse
engineering and code audit, often combined with penetration test-
ing. These findings suggest that such vulnerabilities typically stem
from flaws in communication logic or input validation, requiring a
deep understanding of application-level business processes.

DoS attacks involved a more diverse set of skills. In addition to
traditional methods, they often required vulnerability reproduction
(9) and fuzzing (8), highlighting the value of test-driven techniques
in verifying system stability and robustness. For Web-specific vul-
nerabilities, penetration testing was the sole technique employed
(26 occurrences), underscoring the emphasis on dynamic interac-
tion with web interfaces and business logic rather than firmware
or code-level weaknesses.

#Vulnerabilities/Vehicle 12.7 8.8 3.0 |4311.653| 105 9.6 8.9

Finding 6: ICV vulnerability discovery spans both software and
hardware layers, requiring researchers to possess end-to-end
analysis capabilities and cross-disciplinary expertise. In general,
different vulnerability locations tend to demand different skill
sets, highlighting the need for comprehensive and modular train-
ing in automotive security.

Finding 7: Different types of vulnerabilities require distinct skill
sets. Overall, penetration testing, reverse engineering, and code
audit emerged as core capabilities applicable across nearly all
vulnerability types, demonstrating their high versatility. Instead,
techniques such as fuzzing, traffic analysis, and unpacking were
more context-specific, reflecting the need to adapt skill sets based
on the nature of the vulnerability and the attack surface.

7.2 ICV characteristics

As described in Section 3.1.3, the participating ICVs were catego-
rized along four dimensions: country/region, EPA size, SAE automa-
tion level, and power type. This section analyzes the correlation
between these categories and both vulnerability locations and types,
aiming to reveal distribution patterns and identify common secu-
rity weaknesses across different classes of vehicles. As shown in
Table 3, we mainly put the correlations to EPA size, SAE level, and
power type. Due to the page limit, the analysis of vulnerabilities by
country/region is provided on our website [5].

EPA size mapping. The average number of vulnerabilities dif-
fers significantly across vehicle types with different EPA size classi-
fications. SUV models have the highest average number of vulnera-
bilities (12.7 per vehicle), far exceeding sedans (8.8 per vehicle) and
MPVs (3.0 per vehicle). As a highly competitive mainstream mar-
ket segment, SUVs typically integrate more advanced connected
infotainment and driver assistance features, which lead to a larger
attack surface and greater potential risk [42]. In terms of vulnera-
bility types, authorization issues stand out as the most prominent
security weakness across all EPA size categories. They rank first in
number for SUVs, sedans, and MPVs alike. This indicates that access
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control and permission management are pervasive and systemic
security shortcomings, regardless of vehicle size classification.

SAE level mapping. From the perspective of SAE levels, L2
vehicles have a significantly higher average number of vulnerabil-
ities (11.6) compared to L1 (4.3) and L3 (5.3) vehicles. Compared
to L3 systems, L2 systems still rely heavily on interfaces (such as
voice control), making IVI functions more complex and interfaces
more abundant, thereby expanding the attack surface. This suggests
that the widely adopted L2 level system, due to their functional
complexity and deep integration with the vehicle, are currently at
a peak stage of vulnerability risk.

Power type mapping. In terms of power types, there is a clear
positive correlation between the average number of vulnerabilities
and the degree of vehicle electrification and intelligence. Electric
vehicles have the highest average number of vulnerabilities (10.5),
followed by hybrid vehicles (9.6), while traditional petrol vehicles
have the lowest (8.9). This demonstrates that as vehicles integrate
more electronic control units, connected services, and remote con-
trol features, their overall security risks increase accordingly.

Finding 8: The number of vulnerabilities in a vehicle is related to
its intelligence and functional complexity, which is particularly
evident in SUVs, L2-level vehicles, and electric vehicles.

8 Discussion

This section discusses two aspects: implication for stakeholders and
threats to validity.

8.1 Implications for stakeholders in ICVs

Our empirical analysis reveals that the primary challenge in the
ICV industry is not the inability to defend against advanced attacks,
but in the systemic neglect of basic security best practices. A large
number of vulnerabilities stem from basic oversights, such as 75
instances of weak or plaintext passwords, 112 cases of information
leakage, and 36 intercepting attacks (together accounting for 34.36%
of all vulnerabilities), as well as unprotected debugging interfaces
and unnecessary open ports (e.g., SSH, Telnet). Even more troubling,
some known CVEs patched as early as 2017 remain unaddressed,
exposing critical supply chain risks caused by the integration of
outdated components for cost-saving purposes. Therefore, improv-
ing ICV security hinges on the rigorous implementation of Secure
Software Development Lifecycle principles, particularly in the ar-
eas of basic security hygiene and supply chain risk management.
Improving the security of ICVs requires coordinated efforts from all
stakeholders. To this end, manufacturers should strengthen basic se-
curity protections and third-party component management, while
ensuring secure data transmission through encryption. Researchers
are encouraged to build ICV-specific vulnerability databases and de-
velop efficient automated detection tools. Regulatory bodies should
enforce mandatory standards to unify baseline security require-
ments across the industry and enhance overall system resilience.

8.2 Threats to validity

While our study presents a large-scale empirical analysis of real-
world ICV vulnerabilities, several factors may affect the repro-
ducibility, replicability, and generalizability of our findings.
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Vehicle confidentiality. Due to confidentiality agreements and
ethical considerations, we are unable to disclose detailed informa-
tion about the participating vehicle brands, models, or firmware
versions. This limits the ability to exactly reproduce or replicate
our results. Additionally, our findings may not fully generalize to
vehicles outside of our study. To mitigate this, we selected a diverse
set of 48 commercially available ICVs across various architectures
and manufacturers—an effort that required substantial cost and
resources. We also provide high-level profiling of these vehicles,
including SAE automation level, power type, and EPA vehicle size
classification, to enhance contextual understanding.

Participant expertise. Variations in participant skill sets could
also influence the types of vulnerabilities discovered. Different
teams may yield different results depending on their domain ex-
pertise, making it difficult for others to reconstruct teams with
equivalent capabilities. To mitigate this, we provided participant
skills based on submitted vulnerability reports and analyzed their
association with different vulnerability types and locations.

CTF competition constraints. The time constraints and incen-
tive structures inherent in CTF-style competitions differ from those
in long-term red-team engagements or real-world attack scenar-
ios. As such, the findings in this study are most representative of
controlled, time-bounded environments. Their applicability to per-
sistent threat models or production systems should be interpreted
with caution. To address this, we analyzed the vulnerability discov-
ery process in detail, provided taxonomy coverage statistics, and
released our framework to allow future CTF results to iteratively
refine and extend our taxonomies.

Taxonomy construction bias. Our unified taxonomy was con-
structed based on 13 carefully selected survey papers. While we
aimed to include recent, comprehensive, and highly relevant works,
the selection process could introduce bias and affect the taxonomy’s
initial coverage. Nonetheless, the selected papers cover broad liter-
ature and provide a solid foundation for consolidation.

Annotation subjectivity. To support reproducibility, we re-
leased a dataset of 649 validated vulnerabilities along with a multi-
dimensional classification schema. However, we could not release
technical artifacts such as proof-of-concept code due to ethical and
legal restrictions. Additionally, the labeling process involved expert
judgment, which may introduce subjectivity and potential data in-
completeness. To mitigate this, all classification and validation tasks
were conducted by four highly experienced experts in ICV security,
following multiple rounds of discussion to reach consensus.

9 Conclusions

This study presents a systematic analysis of vulnerabilities in Intel-
ligent Connected Vehicles. Through comprehensive testing efforts,
we constructed a dataset of 649 verified vulnerabilities, spanning
48 different ICV models. Based on prior literature, we extracted
and unified vulnerability taxonomies along two key dimensions:
location and type. We then mapped the collected vulnerabilities
to these categories to assess how well existing taxonomies reflect
real-world threats and to identify newly emerging categories un-
covered through empirical data. In addition, we found significant
correlations between vulnerability characteristics and vehicle types,
further highlighting the importance of implementing modular and
differentiated protection strategies.
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